86 research outputs found

    Optimal path and cycle decompositions of dense quasirandom graphs

    Get PDF
    Motivated by longstanding conjectures regarding decompositions of graphs into paths and cycles, we prove the following optimal decomposition results for random graphs. Let 0<p<10<p<1 be constant and let GGn,pG\sim G_{n,p}. Let odd(G)odd(G) be the number of odd degree vertices in GG. Then a.a.s. the following hold: (i) GG can be decomposed into Δ(G)/2\lfloor\Delta(G)/2\rfloor cycles and a matching of size odd(G)/2odd(G)/2. (ii) GG can be decomposed into max{odd(G)/2,Δ(G)/2}\max\{odd(G)/2,\lceil\Delta(G)/2\rceil\} paths. (iii) GG can be decomposed into Δ(G)/2\lceil\Delta(G)/2\rceil linear forests. Each of these bounds is best possible. We actually derive (i)--(iii) from `quasirandom' versions of our results. In that context, we also determine the edge chromatic number of a given dense quasirandom graph of even order. For all these results, our main tool is a result on Hamilton decompositions of robust expanders by K\"uhn and Osthus.Comment: Some typos from the first version have been correcte

    The existence of designs via iterative absorption: hypergraph FF-designs for arbitrary FF

    Full text link
    We solve the existence problem for FF-designs for arbitrary rr-uniform hypergraphs~FF. This implies that given any rr-uniform hypergraph~FF, the trivially necessary divisibility conditions are sufficient to guarantee a decomposition of any sufficiently large complete rr-uniform hypergraph into edge-disjoint copies of~FF, which answers a question asked e.g.~by Keevash. The graph case r=2r=2 was proved by Wilson in 1975 and forms one of the cornerstones of design theory. The case when~FF is complete corresponds to the existence of block designs, a problem going back to the 19th century, which was recently settled by Keevash. In particular, our argument provides a new proof of the existence of block designs, based on iterative absorption (which employs purely probabilistic and combinatorial methods). Our main result concerns decompositions of hypergraphs whose clique distribution fulfills certain regularity constraints. Our argument allows us to employ a `regularity boosting' process which frequently enables us to satisfy these constraints even if the clique distribution of the original hypergraph does not satisfy them. This enables us to go significantly beyond the setting of quasirandom hypergraphs considered by Keevash. In particular, we obtain a resilience version and a decomposition result for hypergraphs of large minimum degree.Comment: This version combines the two manuscripts `The existence of designs via iterative absorption' (arXiv:1611.06827v1) and the subsequent `Hypergraph F-designs for arbitrary F' (arXiv:1706.01800) into a single paper, which will appear in the Memoirs of the AM

    Euler tours in hypergraphs

    Get PDF
    We show that a quasirandom kk-uniform hypergraph GG has a tight Euler tour subject to the necessary condition that kk divides all vertex degrees. The case when GG is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the kk-subsets of an nn-set.Comment: version accepted for publication in Combinatoric

    Pseudorandom hypergraph matchings

    Full text link
    A celebrated theorem of Pippenger states that any almost regular hypergraph with small codegrees has an almost perfect matching. We show that one can find such an almost perfect matching which is `pseudorandom', meaning that, for instance, the matching contains as many edges from a given set of edges as predicted by a heuristic argument.Comment: 14 page

    Resolution of the Oberwolfach problem

    Get PDF
    The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of K2n+1K_{2n+1} into edge-disjoint copies of a given 22-factor. We show that this can be achieved for all large nn. We actually prove a significantly more general result, which allows for decompositions into more general types of factors. In particular, this also resolves the Hamilton-Waterloo problem for large nn.Comment: 28 page
    corecore